Generalized Data Automata and Fixpoint Logic
نویسندگان
چکیده
Data ω-words are ω-words where each position is additionally labelled by a data value from an infinite alphabet. They can be seen as graphs equipped with two sorts of edges: ‘next position’ and ‘next position with the same data value’. Based on this view, an extension of Data Automata called Generalized Data Automata (GDA) is introduced. While the decidability of emptiness of GDA is open, the decidability for a subclass class called Büchi GDA is shown using Multicounter Automata. Next a natural fixpoint logic is defined on the graphs of data ω-words and it is shown that the μ-fragment as well as the alternation-free fragment is undecidable. But the fragment which is defined by limiting the number of alternations between future and past formulas is shown to be decidable, by first converting the formulas to equivalent alternating Büchi automata and then to Büchi GDA. 1998 ACM Subject Classification F.4.1 Mathematical Logic
منابع مشابه
Uniform Interpolation for Coalgebraic Fixpoint Logic
We use the connection between automata and logic to prove that a wide class of coalgebraic fixpoint logics enjoys uniform interpolation. To this aim, first we generalize one of the central results in coalgebraic automata theory, namely closure under projection, which is known to hold for weak-pullback preserving functors, to a more general class of functors, i.e.; functors with quasi-functorial...
متن کاملParity Games and Automata for Game Logic (Extended Version)
Parikh’s game logic is a PDL-like fixpoint logic interpreted on monotone neighbourhood frames that represent the strategic power of players in determined two-player games. Game logic translates into a fragment of the monotone μ-calculus, which in turn is expressively equivalent to monotone modal automata. Parity games and automata are important tools for dealing with the combinatorial complexit...
متن کاملParity Games and Automata for Game Logic
Parikh’s game logic is a PDL-like fixpoint logic interpreted on monotone neighbourhood frames that represent the strategic power of players in determined two-player games. Game logic translates into a fragment of the monotone μ-calculus, which in turn is expressively equivalent to monotone modal automata. Parity games and automata are important tools for dealing with the combinatorial complexit...
متن کاملModal Fixpoint Logics
Context. Modal fixpoint logics constitute a research field of considerable interest, not only because of its many applications in computer science, but also because of its rich mathematical theory, which features deep connections with fields as diverse as lattice theory, automata theory, and universal coalgebra. In the 1970s computer scientists started to use modal logics as specification langu...
متن کاملAlternation Is Strict For Higher-Order Modal Fixpoint Logic
We study the expressive power of Alternating Parity Krivine Automata (APKA), which provide operational semantics to Higher-Order Modal Fixpoint Logic (HFL). APKA consist of ordinary parity automata extended by a variation of the Krivine Abstract Machine. We show that the number and parity of priorities available to an APKA form a proper hierarchy of expressive power as in the modal μ-calculus. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014